Local Vanishing of Characteristic Cohomology
نویسنده
چکیده
Introduction. To a smooth manifold M one can associate in a natural way a new smooth manifold, the manifold of k-jets of n-dimensional submanifolds of M , indicated by G n (M), which parametrizes in a smooth way the k-jets of immersed submanifolds ofM . OnG n (M) one can build in a canonical way a differential ideal, denoted . The cohomology associated to the complexG n (M)/ (k) is called characteristic cohomology. These ideas, which in part go back to [C], are explained here. A more detailed introduction to them can be read, for example, in the introduction to [BG1] or in [BGH1] (see also [BG2], [BGH2], [BGH3]). Characteristic cohomology appears in this picture as a cohomological tool to study n-dimensional submanifolds of M . In this context one should think of submanifolds as solutions to systems of PDEs (partial differential equations). For example, they could be integral manifolds of an integrable distribution or of a differential ideal. Characteristic cohomology (or a variation of it) can then be used to provide invariants for the system of PDEs. The notation for the qth characteristic cohomology group over a smooth manifold M is
منابع مشابه
ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.
متن کاملON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...
متن کاملOn the Associated Primes of the generalized $d$-Local Cohomology Modules
The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary generalized local cohomology modules. Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$ are finitely generated $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...
متن کاملOn natural homomorphisms of local cohomology modules
Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$. Let $I$ be an ideal of $R$ with $grade(I,M)=c$. In this article we will investigate several natural homomorphisms of local cohomology modules. The main purpose of this article is to investigate when the natural homomorphisms $gamma: Tor^{R}_c(k,H^c_I(M))to kotim...
متن کاملGeneralized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملLocal Cohomology and D-affinity in Positive Characteristic
If k is a field of positive characteristic, the local cohomology modules HjI(R) vanish for j > 2 (see Chapitre III, Proposition (4.1) in [3]). However, if k is a field of characteristic zero, H3I(R) is non-vanishing (see Proposition 2.1 of this paper or Remark 3.13 in [5]). Consider the Grassmann variety X = Gr(2, V ), where V is a 5dimensional vector space over k. Let W be a one dimensional su...
متن کامل